Geometry 1st Semester

The exam will contain Multiple Choice questions. You may use your scientific calculator for the entire exam. There will also be patty paper, rulers, and scratch paper available.

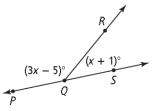
It is strongly recommended that you spend quality time reviewing all tests and quizzes as well as looking through the notes you took during class. Don't procrastinate!!

Wednesday, January 22 nd 5 th : 10:10 – 11:40 am 6 th : 12:35 – 2:05 pm 7 th : 2:15 – 3:45pm	Thursday, January 23 rd 3 rd : 8:00am – 9:30am 4 th : 9:40am – 11:10am	Friday, January 24th 1 st : 8:00am – 9:30am 2 nd : 9:40am – 11:10am			
Chapter 1: Foundations of GeometryVocabularyMeasuringDistance FormulaInductive F	angles and segments	Constructions Midpoint ctive Reasoning Proofs			
Chapter 2: Parallel and Perpendicular Properties of parallel lines Solving problems with parallel lin	Proving that lines are	e parallel Id perpendicular lines			
Chapter 3: TransformationsReflectionsRotations	Translations	Symmetry			
Chapter 4: Triangles Triangle Interior Angle Sum Properties of Equilateral Triangle Overlapping triangles	0	gle Conjecture Proofs y Conjectures: SSS, SAS, ASA, SAA			
Chapter 5: Relationships in Triangles					
Perpendicular and angle bisector Circumcenter Centroid Finding the range of the 3 rd side	Orthocenter	ans Altitudes Incenter gle inequality theorem			
	<u>als</u> lygon Exterior Angle Sum sceles Trapezoids Rhombus/Rectangle/Square	Kite Properties Properties of Midsegments e Properties			

Notes

Quadrilateral Proofs

Test Dates:


- The grade you have earned after your final exam is done will be the grade you receive for 1st Semester. I do not round final grades (see Course Expectations).
- Check your grades on Skyward tonight. If you think I have made a mistake, please email me immediately

Topic 1 Review – Foundations of Geometry

1. If DM = 35, what is the value of *r*?

 $\begin{array}{c|c} r+2 & 2r-13 \\ \hline D & G & M \end{array}$

Items 2–3. Points *P*, *Q*, and *S* are collinear.

- 2. What is *m*DPQR?
- **3.** If a ray QT bisects DRQS, what will be the measure of one of the resulting angles?
- **4.** Points *L*, *M*, and *N* are collinear. You are given *LM* = 13 and *LN* = 20. What is a possible value of *MN*?
- 5. Ray *BD* bisects $\bigcirc ABC$ so that $m \bigcirc DBC = (x + 6)$ and $m \bigcirc ABD = (2x 12)$. What is x?
- **6.** What is the distance between points F(2, 9) and G(4, 14)? Round to the nearest whole number.

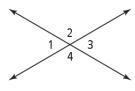
Items 7–8. Use the number line below.

G H I J K L M N O

- 7. What is *KN* + *IK*?
- **8.** What is the coordinate of the midpoint of \overline{GO} ?

Items 9–11. Use the following conditional:

If a number is an integer, then it is either positive or negative.


- 9. What is the hypothesis of the conditional?
- 10. What is the conclusion of the conditional?
- **11.** What is a counterexample for the conditional?
- **12.** What is the length of a segment with endpoints at (-3, 4) and (4, 4)?
- **13.** Is the converse of the conditional below true?

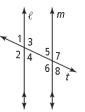
If a polygon is a triangle, then it has exactly three sides.

15. Use the Law of Detachment to make a conclusion.

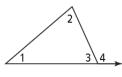
If a person wants to get a car, that person must buy car insurance. Jayla wants to get a car.

Items 16–18. Use the diagram shown.

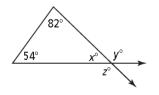
- **16.** The statement "Angle 2 is congruent to angle 4" is justified by the
- **17.** If $m \oplus 1$ equals (4x + 2) and $m \oplus 2$ equals 110, what is the value of *x*?


Topic 2 Review – Parallel and Perpendicular Lines

1. What type of lines are coplanar and do not intersect?


Items 2–5. Lines ℓ and *m* are intersected by transversal *t*.

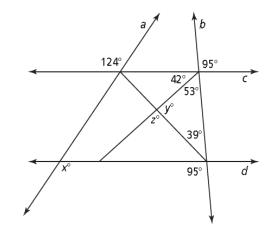
ℓ || *m*


2. Which angles are supplementary to D1?

- **3.** Which angles are congruent to ⊕5?
- **4.** By which postulate or theorem is D3 @ D6?
- **5.** If $m \oplus 2 = 112$, what is $m \oplus 7$?
- 6. Write two equations relating the measure of $\oplus 4$ to the measures of $\oplus 1$, $\oplus 2$, and $\oplus 3$.

Items 7–9. A triangle is shown.

7. What is x?


8. What is *y*?

9. Which of the following statements are true? Select all that apply.

A x = y **B** x + y = 180 **C** y = z**D** x + z = 180

10. In DABC, $m \angle A = 75$ and $m \ominus C = 20$. What is $m \angle B$?

Items 11–15. Lines *a*, *b*, *c*, and *d* intersect as shown.

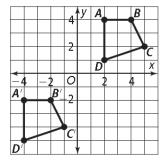
- **11.** Which pair of lines are parallel?
- **12.** What is *x*? **13.** What is *y*?
- 14. What is *z*?
- **15.** If the slope of line *c* is given, the slope of which other line is known?
- **16.** What is the equation of a line that is parallel to the line y = 2x + 7 and passes through the point (-2, 4)?
- **17.** What is the slope of a line perpendicular to the line $y = -\frac{1}{4}X 1$?

Items 18–20. Part of a city map is shown.

- 18. Which street is parallel to 1st Ave?
- **19.** A city planner wants to build a road perpendicular to D Street. What is the slope of the new road?
- **20.** If $m \oplus 5 = x$, which angles also have a measure of *x*?

Topic 3 Review - Transformations

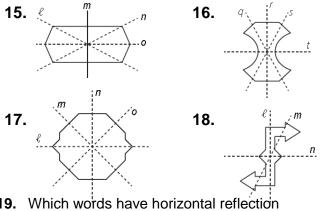
- **1.** What is a rule for S the translation of $\triangle RST?$ R'S 4 Ο 2 Items 2–5. Find the coordinates of the vertices of each image. Τ \cap R 3. r_(90°,0)(QRST) **2.** $R_{x-axis}(QRST)$ **5.** $(R_V \circ T_{(2, 0)})(QRST)$ **4.** $T_{(3, -2)}(QRST)$ Items 6–7. What rigid motion maps the solid-line figure onto the dotted-line figure? 15.
 - 8. Which of the descriptions is true for the graph?


B''(-4, -3) B''(-4, -3) B''(-4, -3) B''(-4, -3) B''(-4, -3) B''(-4, -3) B''(-4, -3)

- **A** $\Delta A'B'C'$ is $T_{(0,-2)}$ (ΔABC)
- **B** $\triangle A'B'C'$ is $(T_{(0, -2)} \circ R_{x-axis}) (\triangle ABC)$
- **C** $\triangle A'B'C'$ is $R_{x-axis}(\triangle ABC)$
- **D** $\triangle A'B'C'$ is $r_{90^{\circ}}(\triangle ABC)$
- **9.** Point P'(5, -4) is the image of point P(2, 3) under a translation. What is the image of (6, -2) under the same translation?
- 10. Which capital letters have one or more lines of

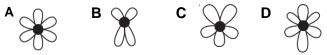
symmetry? Select all that apply.

A X **B** Z **C** H **D** C


- Point *T* is at (−2, 5). What are the coordinates of point *T* after *R_{y*-axis} ∘ *R_{x*-axis}?
- **12.** The rule $T_{(5, -3)}$ is used for point (5, -1). What quadrant is the translated point located in?
- **13.** Which of the following descriptions apply to the transformation on the right?

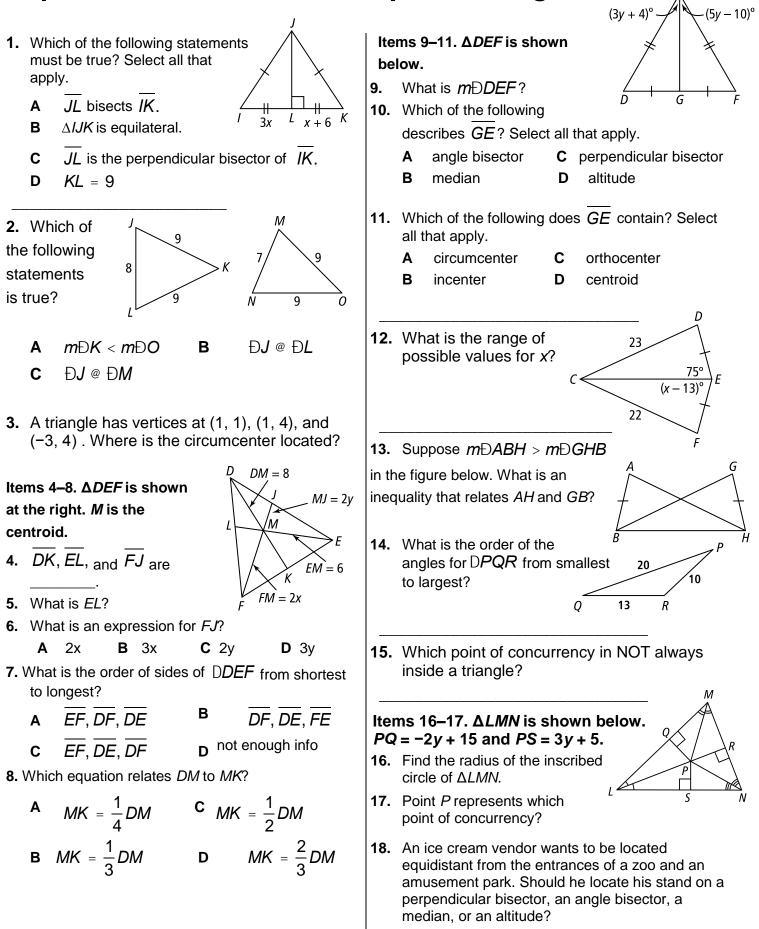
14. If a figure is translated with the rule $T_{\langle -3, 3 \rangle}$, which translation moves the image back to the original position?

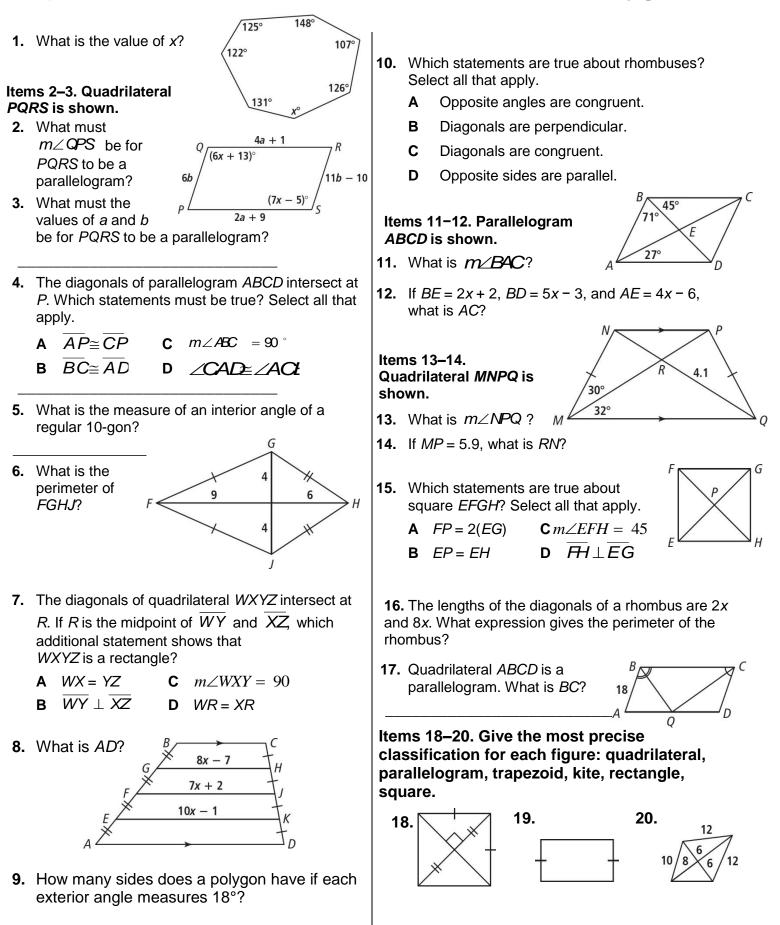
Α	T(3,-3)	В	<i>T</i> ⟨ -3, 3⟩
С	T(0,3)	D	T(-3, 0)


Items 15–18. Find the lines of symmetry for each shape. Select all that apply.

19. Which words have horizontal reflection symmetry?

Α	BOO	С	RADAR
В	PIP	D	EXCEED


20. Which shape is an example of rotational symmetry?


Topic 4 Review – Triangle Congruence

1. What theorem shows **11.** Which statement is correct? that $\triangle ACE \cong \triangle BCD$? $\triangle AGT \cong \triangle QME$ Α $\Delta TAG \cong \Delta EMQ$ В 6¹*y*</sup> 2. What composition С $\Delta GTA \cong \Delta QME$ of rigid motions 0 $\wedge AGT \simeq \wedge MEQ$ D maps ΔPQR to 4 $\Delta XZY?$ х Items 12–14. Refer to the X diagram shown. 0 P Items 3–4. *AJKL* and **12.** If $\angle BAC \cong \angle DCA$ what theorem can be used to ΔLMN are shown. 72° show that $\triangle ABE \simeq \triangle CDE$? **3.** What is $m \angle KJL$? **13.** If *BD* bisects *AC* and *AC* bisects *BD*, what **4.** What is $m \angle LNM$? theorem can be used to show that $\wedge ABE \cong \wedge CDE?$ 5. What additional piece of information is needed to **14.** If $\overline{AB} \parallel \overline{CD}$ and $\overline{AC} \cong \overline{BD}$, what theorem can be show that $\triangle DEF \cong \triangle PQR$ by ASA? used to show that $\triangle ACD \cong \triangle CAB$? 35° Items 15–16. Refer to the diagram shown. Items 6–7. Refer to the **15.** What is $m \angle MNT$? diagram shown. 6. What theorem shows that **16.** What is *MR*? $\Delta AJG \cong \Delta CDF?$ G Κ 7. Which can be proven? Select all that apply. 2 **17.** Which triangle is A $\angle CED \simeq \angle AHJC$ $CB \simeq DB$ congruent 0 to ΔKLM ? **B** $AB \cong CB$ **D** $\angle DAG \cong \angle JCF$ MB 8. What is the perimeter of the quadrilateral JKLM? 12 R **118.** To show that $\triangle RQP \cong \triangle PSR$ 2x + 3by SSS, what must be the value ′60° of x? 4x - 79. Which of the figures appear to be congruent? **19.** Which theorem shows $\Delta QMP \cong \Delta RNP?$ Ш **20.** Which statements are true? Select all that apply. **10.** Which of the following cannot be used to prove A $\wedge FGK \simeq \wedge FJK$ that two triangles are congruent? **B** $\triangle GKH \cong \triangle JKH$ Α AAA С SSS **C** $FG \cong KG$ В ASA D HL **D** \angle *GFH* $\cong \triangle$ *JFH*

Topic 5 Review – Relationships in Triangles

Topic 6 Review – Quadrilaterals and Other Polygons

Geometry Final Exam Review Answer Key

Topic 1	Topic 2	Topic 3	Topic 4	<u>Topic 5</u>	Topic 6
1. $\frac{46}{3}$ 2. 133° 3. 23.5° 4. 7 5. 18 6. 5 7. 5 8. 0 9. A number is an integer. 10. A number is either positive or negative. 11. 0, it's an integer but it's neither positive nor negative. 12. 7 13. Yes 15. Jayla must buy car insurance. 16. Vertical Angles Thm.	8. 136° 9. <i>B</i> , <i>C</i> , <i>D</i> 10. 85° 11. <i>c</i> and <i>d</i> 12. 124° 13. 88° 14. 92° 15. line <i>d</i> 16. $y = 2x + 8$ 17. $m_{\perp} = 4$ 18. 2^{nd} Ave. 19. $m_{\perp} = 0$ 20. $\measuredangle 6, \measuredangle 7, \measuredangle 8, \measuredangle 9,$	1. $T_{<7,-3>}$ 2. $Q'(1,-3); R'(3,3);$ S'(0,2); T'(-2,-1) 3. $Q'(-3,1); R'(3,3);$ S'(2,0); T'(-1,-2) 4. $Q'(4,1); R'(6,-5);$ S'(3,-4); T'(1,-1) 5. $Q'(-3,3); R'(-5,-3);$ S'(-2,-2); T'(0,1) 6. translation 7. reflection 8. C 9. $(9,-9)$ 10. A, C, D 11. $(2,-5)$ 12. Quadrant IV 13. $T_{<-6,-6>}$ 14. A 15. m, o 16. r, t 17. l, n 18. none 19. A, D 20. A	1. SAS 2. $T_{<6,2>} \circ R_{x=-2}$ 3. 54° 4. 63° 5. $\measuredangle D \cong \measuredangle P$ 6. HL 7. <i>A</i> , <i>B</i> , <i>D</i> 8. 45 9. II and III 10. <i>A</i> 11. <i>C</i> 12. AAS 13. SSS 14. ASA 15. 125° 16. 20 17. $\triangle GJH$ 18. 5 19. AAS 20. <i>A</i> , <i>B</i> , <i>D</i>	1. <i>A</i> , <i>C</i> , <i>D</i> 2. <i>B</i> 3. $(-1, 2.5)$ 4. medians 5. 9 6. <i>B</i> 7. <i>D</i> 8. <i>B</i> 9. 50° 10. <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> 11. <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> 12. 13° < <i>x</i> < 88° 13. <i>AH</i> > <i>GB</i> 14. $\angle Q, \angle P, \angle R$ 15. circumcenter and orthocenter 16. 11 17. incenter 18. perpendicular bisector	1. 141° 2. 59° 3. $a = 4, b = 2$ 4. A, B, D 5. 144° 6. $4\sqrt{13} + 2\sqrt{97}$ 7. D 8. 35 9. 20 10. A, B, D 11. 37° 12. 44 13. 118° 14. 1.8 15. C, D 16. $4x\sqrt{17}$ 17. 36 18. square 19. quadrilateral 20. kite

17. 17