Geometry $1^{\text {st }}$ Semester

The exam will contain Multiple Choice questions. You may use your scientific calculator for the entire exam. There will also be patty paper, rulers, and scratch paper available.

It is strongly recommended that you spend quality time reviewing all tests and quizzes as well as looking through the notes you took during class. Don't procrastinate!!

Test Dates:

Wednesday, January $22^{\text {nd }}$
$5^{\text {th }}: 10: 10-11: 40 \mathrm{am}$
$6^{\text {th }}: 12: 35-2: 05 \mathrm{pm}$
$7^{\text {th. }}: 2: 15-3: 45 \mathrm{pm}$

Thursday, January $23^{\text {rd }}$
$3^{\text {rd }}: 8: 00 \mathrm{am}-9: 30 \mathrm{am}$
$4^{\text {th }}: 9: 40 \mathrm{am}-11: 10 \mathrm{am}$

Friday, January 24th
$1^{\text {st. }} 8: 00 \mathrm{am}-9: 30 \mathrm{am}$
$2^{\text {nd }}: 9: 40 a m-11: 10 a m$

Chapter 1: Foundations of Geometry

Vocabulary Measuring angles and segments
Distance Formula Inductive Reasoning

Constructions Midpoint Deductive Reasoning Proofs

Chapter 2: Parallel and Perpendicular Lines

Properties of parallel lines
Solving problems with parallel lines

Proving that lines are parallel
Slopes of parallel and perpendicular lines

Chapter 3: Transformations

Reflections Rotations Translations Symmetry

Chapter 4: Triangles

Triangle Interior Angle Sum
Properties of Equilateral Triangles
Overlapping triangles

Properties of Isosceles Triangles
Triangle Exterior Angle Conjecture Proofs
Triangle Congruency Conjectures: SSS, SAS, ASA, SAA
Non Congruencies: SSA, AAA

Chapter 5: Relationships in Triangles

Perpendicular and angle bisectors in triangles Circumcenter Centroid Orthocenter Finding the range of the $3^{\text {rd }}$ side of a triangle
Medians Incenter Altitudes
Triangle inequality theorem

Chapter 6: Polygons and Quadrilaterals

Polygon Sum Conjecture
Trapezoid Properties
Polygon Exterior Angle Sum
Kite Properties

Properties of Parallelograms
Quadrilateral Proofs

Notes

- The grade you have earned after your final exam is done will be the grade you receive for $1^{\text {st }}$ Semester. I do not round final grades (see Course Expectations).
- Check your grades on Skyward tonight. If you think I have made a mistake, please email me immediately

Topic 1 Review - Foundations of Geometry

1. If $D M=35$, what is the value of r ?

Items 2-3. Points P, Q, and S are collinear.

2. What is $m P Q R$?
3. If a ray $Q T$ bisects $R Q S$, what will be the measure of one of the resulting angles?
4. Points L, M, and N are collinear. You are given $L M=13$ and $L N=20$. What is a possible value of $M N$?
5. Ray $B D$ bisects $A B C$ so that $m \quad D B C=$ $(x+6)$ and $m \quad A B D=(2 x-12)$. What is x ?
6. What is the distance between points $F(2,9)$ and $G(4,14)$? Round to the nearest whole number.

Items 7-8. Use the number line below.

7. What is $K N+I K$?
8. What is the coordinate of the midpoint of $\overline{G O}$?

Items 9-11. Use the following conditional:
If a number is an integer, then it is either positive or negative.
9. What is the hypothesis of the conditional?
10. What is the conclusion of the conditional?
11. What is a counterexample for the conditional?
12. What is the length of a segment with endpoints at $(-3,4)$ and (4, 4)?
13. Is the converse of the conditional below true?

If a polygon is a triangle, then it has exactly three sides.
15. Use the Law of Detachment to make a conclusion.
If a person wants to get a car, that person must buy car insurance. Jayla wants to get a car.

Items 16-18. Use the diagram shown.

16. The statement "Angle 2 is congruent to angle 4 " is justified by the
\qquad .
17. If m 1 equals $(4 x+2)$ and $m 2$ equals 110 , what is the value of x ?

Topic 2 Review - Parallel and Perpendicular Lines

1. What type of lines are coplanar and do not intersect?

Items 2-5. Lines $\boldsymbol{\ell}$ and \boldsymbol{m} are intersected by transversal t.
e || m
2. Which angles are supplementary to $1 ?$
3. Which angles are
 congruent to 5 ?
4. By which postulate or theorem is 3
5. If $m \quad 2=112$, what is m ?
6. Write two equations relating the measure of 4 to the measures of 1, 2, and 3.

Items 7-9. A triangle is shown.

7. What is x ?
8. What is y ?
9. Which of the following statements are true? Select all that apply.
A $x=y$
B $\quad x+y=180$
C $y=z$
D $x+z=180$
10. In $A B C, m \angle A=75$ and $m \quad C=20$. What is $m \measuredangle B$?

Items 11-15. Lines a, b, c, and dintersect as shown.

11. Which pair of lines are parallel?
12. What is x ?
13. What is y ?
14. What is z ?
15. If the slope of line c is given, the slope of which other line is known?
16. What is the equation of a line that is parallel to the line $y=2 x+7$ and passes through the point $(-2,4)$?
17. What is the slope of a line perpendicular to the line $y=-\frac{1}{4} x-1$?

Items 18-20. Part of a city map is shown.

18. Which street is parallel to 1 st Ave?
19. A city planner wants to build a road perpendicular to D Street. What is the slope of the new road?
20. If $m \quad 5=x$, which angles also have a measure of x ?

Topic 3 Review - Transformations

1. What is a rule for the translation of $\triangle R S T$?

Items 2-5. Find the coordinates of the vertices of each image.

2. $R_{x \text {-xxis }}(Q R S T)$
3. $r_{\left(90^{\circ}, \mathrm{O}\right)}($ QRST)
4. $T_{\langle 3,-2\rangle}$ (QRST)
5. $\left(R_{y} \circ T_{\langle 2,0\rangle}\right)(Q R S T)$

Items $6-7$. What rigid motion maps the solid-line figure onto the dotted-line figure?
6.

7.

8. Which of the descriptions is true for the graph?

$A^{\prime \prime}(0,-5) \quad B^{\prime}(1,-3)$
A $\triangle A^{\prime} B^{\prime} C^{\prime}$ is $T_{(0,-2)}(\triangle A B C)$
B $\triangle A^{\prime} B^{\prime} C^{\prime}$ is $\left(T_{(0,-2)^{\circ}} R_{\text {xaxis }}\right)(\triangle A B C)$
C $\triangle A^{\prime} B^{\prime} C^{\prime}$ is $R_{x \text { axis }}(\triangle A B C)$
D $\triangle A^{\prime} B^{\prime} C^{\prime}$ is $r_{90^{\circ}}(\triangle A B C)$
9. Point $P(5,-4)$ is the image of point $P(2,3)$ under a translation. What is the image of $(6,-2)$ under the same translation?
10. Which capital letters have one or more lines of
symmetry? Select all that apply.
A X
B Z
C H
D C
11. Point T is at $(-2,5)$. What are the coordinates of point T after $R_{y \text {-axis }} \circ R_{x \text { axis }}$?
12. The rule $T_{(5,-3)}$ is used for point $(5,-1)$. What quadrant is the translated point located in?
13. Which of the following descriptions apply to the transformation on the right?

14. If a figure is translated with the rule $T_{\langle-3,3\rangle}$, which translation moves the image back to the original position?
A $T_{(3,-3)}$
B $\quad T_{\langle-3,3\rangle}$
C $T_{\langle 0,3\rangle}$
D $T_{1-3,0\rangle}$

Items 15-18. Find the lines of symmetry for each shape. Select all that apply.
15.

16.

17.

18.

19. Which words have horizontal reflection symmetry?
A BOO
C RADAR
B PIP
d EXCEED
20. Which shape is an example of rotational symmetry?
?
B
0
C

D

Topic 4 Review - Triangle Congruence

1. What theorem shows that $\triangle A C E \cong \triangle B C D$?

2. What composition of rigid motions maps $\triangle P Q R$ to $\triangle X Z Y$?

Items 3-4. $\Delta J K L$ and $\triangle L M N$ are shown.
3. What is $m \angle K J L$?
4. What is $m \angle L N M$?

5. What additional piece of information is needed to show that $\triangle D E F \cong \triangle P Q R$ by ASA ?

Items 6-7. Refer to the diagram shown.

6. What theorem shows that $\triangle A J G \cong \Delta C D F ?$

7. Which can be proven? Select all that apply.
A $\angle C E D \cong \angle A H J$
$\overline{C B} \cong \overline{D B}$
B $\overline{A B} \cong \overline{C B}$
D $\angle D A G \cong \angle J C F$
8. What is the perimeter of the quadrilateral JKLM?

9. Which of the figures appear to be congruent?

10. Which of the following cannot be used to prove that two triangles are congruent?
A AAA
C SSS
B ASA
D HL
11. Which statement is correct?

A $\triangle A G T \cong \triangle Q M E$
B $\triangle T A G \cong \triangle E M Q$
C $\triangle G T A \cong \triangle Q M E$

D $\triangle A G T \cong \triangle M E Q$

12. If $\angle B A C \cong \angle D C A$, what theorem can be used to show that $\triangle A B E \cong \triangle C D E$?
13. If $\overline{B D}$ bisects $\overline{A C}$ and $\overline{A C}$ bisects $\overline{B D}$, what theorem can be used to show that $\triangle A B E \cong \triangle C D E ?$
14. If $\overline{A B} \| \overline{C D}$ and $\overline{A C} \cong \overline{B D}$, what theorem can be used to show that $\triangle A C D \cong \triangle C A B$?

Items 15-16. Refer to the diagram shown.

15. What is $m \angle M N T$?
16. What is $M R$?
17. Which triangle is congruent to $\Delta K L M$?

118. To show that $\Delta R Q P \cong \triangle P S R$ by SSS, what must be the value of x ?

20. Which statements are true? Select all that apply.

A $\Delta F G K \cong \triangle F J K$
B $\triangle G K H \cong \Delta J K H$
c $\overline{F G} \cong \overline{K G}$
D $\angle G F H \cong \triangle J F H$

Topic 5 Review - Relationships in Triangles

1. Which of the following statements must be true? Select all that apply.
A $\overline{J L}$ bisects $\overline{I K}$.
B $\Delta I J K$ is equilateral.

C $\overline{J L}$ is the perpendicular bisector of $\overline{I K}$.
D $K L=9$
2. Which of the following statements is true?

A $m K<m \quad O$
B $J \quad L$ C J M
3. A triangle has vertices at $(1,1),(1,4)$, and $(-3,4)$. Where is the circumcenter located?

Items 4-8. $\triangle D E F$ is shown at the right. M is the centroid.
4. $\overline{D K}, \overline{E L}$, and $\overline{F J}$ are
5. What is $E L$?

6. What is an expression for $F J$?
A $2 x$
B 3x
C 2 y
D 3y
7. What is the order of sides of $D E F$ from shortest to longest?
A $\overline{E F}, \overline{D F}, \overline{D E}$
B $\overline{D F}, \overline{D E}, \overline{F E}$
C $\overline{E F}, \overline{D E}, \overline{D F}$
D not enough info
8. Which equation relates $D M$ to $M K$?
A $M K=\frac{1}{4} D M$
C $M K=\frac{1}{2} D M$
B $M K=\frac{1}{3} D M$
D $\quad M K=\frac{2}{3} D M$

Items 9-11. $\triangle D E F$ is shown below.
9. What is m DEF?

10. Which of the following describes $\overline{G E}$? Select all that apply.
A angle bisector
C perpendicular bisector
B median
D altitude
11. Which of the following does $\overline{G E}$ contain? Select all that apply.
A circumcenter
C orthocenter
B incenter
D centroid
12. What is the range of possible values for x ?
13. Suppose $m A B H>m \quad G H B$
 in the figure below. What is an inequality that relates $A H$ and $G B$?
14. What is the order of the
 angles for
 to largest?

15. Which point of concurrency in NOT always inside a triangle?

Items 16-17. $\triangle L M N$ is shown below. $P Q=-2 y+15$ and $P S=3 y+5$.
16. Find the radius of the inscribed circle of $\triangle L M N$.
17. Point P represents which
 point of concurrency?
18. An ice cream vendor wants to be located equidistant from the entrances of a zoo and an amusement park. Should he locate his stand on a perpendicular bisector, an angle bisector, a median, or an altitude?

Topic 6 Review - Quadrilaterals and Other Polygons

1. What is the value of x ?

Items 2-3. Quadrilateral PQRS is shown.

2. What must
$m \angle O P S$ be for $P Q R S$ to be a parallelogram?
3. What must the values of a and b
 be for $P Q R S$ to be a parallelogram?
4. The diagonals of parallelogram $A B C D$ intersect at P. Which statements must be true? Select all that apply.
A $\overline{A P} \cong \overline{C P}$
C $m \angle A B C=90^{\circ}$
B $\overline{B C} \cong \overline{A D}$
D $\angle C A D=\angle A C t$
5. What is the measure of an interior angle of a regular 10-gon?
6. What is the perimeter of FGHJ?

7. The diagonals of quadrilateral $W X Y Z$ intersect at R. If R is the midpoint of $\overline{W Y}$ and $\overline{X Z}$, which additional statement shows that $W X Y Z$ is a rectangle?
A $W X=Y Z$
C $m \angle W X Y=90$
B $\overline{W Y} \perp \overline{X Z}$
D $W R=X R$
8. What is $A D$?

9. How many sides does a polygon have if each exterior angle measures 18° ?
10. Which statements are true about rhombuses? Select all that apply.
A Opposite angles are congruent.
B Diagonals are perpendicular.
C Diagonals are congruent.
D Opposite sides are parallel.

Items 11-12. Parallelogram $A B C D$ is shown.

11. What is $m / B A C$?

12. If $B E=2 x+2, B D=5 x-3$, and $A E=4 x-6$, what is $A C$?

Items 13-14.
Quadrilateral MNPQ is shown.
13. What is $m \angle N P Q$?

14. If $M P=5.9$, what is $R N$?
15. Which statements are true about square $E F G H$? Select all that apply.
A $F P=2(E G)$
C $m \angle E F H=45$
B $E P=E H$
D $\overline{F H} \perp \overline{E G}$

16. The lengths of the diagonals of a rhombus are $2 x$ and $8 x$. What expression gives the perimeter of the rhombus?
17. Quadrilateral $A B C D$ is a parallelogram. What is $B C$?

Items 18-20. Give the most precise classification for each figure: quadrilateral, parallelogram, trapezoid, kite, rectangle, square.
18.

19.

20.

Geometry Final Exam Review Answer Key

Topic 1

1. $46 / 3$ Topic 2
2. parallel
3. 133°
4. 23.5°
5. 7
6. 18
7. 5
8. 5
9. 0
10. A number is an integer.
11. A number is either positive or negative.
12. 0 , it's an integer but it's neither positive nor negative.
13. 7
14. Yes
15. Jayla must buy car insurance.
16. Vertical Angles Thm.
17. 17

Topic 3

1. $T_{\langle 7,-3\rangle}$
2. $Q^{\prime}(1,-3) ; R^{\prime}(3,3)$; $S^{\prime}(0,2) ; T^{\prime}(-2,-1)$
3. $Q^{\prime}(-3,1) ; R^{\prime}(3,3)$; $S^{\prime}(2,0) ; T^{\prime}(-1,-2)$
4. $Q^{\prime}(4,1) ; R^{\prime}(6,-5)$;
$S^{\prime}(3,-4) ; T^{\prime}(1,-1)$
5. $Q^{\prime}(-3,3) ; R^{\prime}(-5,-3)$;
$S^{\prime}(-2,-2) ; T^{\prime}(0,1)$
6. translation
7. reflection
8. C
9. $(9,-9)$
10. A, C, D
11. $(2,-5)$
12. Quadrant IV
13. $T_{<-6,-6\rangle}$
14. A
15. m, o
16. r, t
17. I, n
18. none
19. A, D
20. A

Topic 4

1. SAS
2. $T_{<6,2\rangle} \circ R_{x=-2}$
3. 54°
4. 63°
5. $\measuredangle D \cong \measuredangle P$
6. HL
7. A, B, D
8. 45
9. II and III
10. A
11. C
12. AAS
13. SSS
14. ASA
15. 125°
16. 20
17. $\Delta G J H$
18. 5
19. AAS
20. A, B, D

Topic 5

1. A, C, D
2. B
3. $(-1,2.5)$
4. medians
5. 9
6. B
7. D
8. B
9. 50°
10. A, B, C, D
11. A, B, C, D
12. $13^{\circ}<x<88^{\circ}$
13. $A H>G B$
14. $\measuredangle Q, \measuredangle P, \measuredangle R$
15. circumcenter
and
orthocenter
16. 11
17. incenter
18. perpendicular bisector

Topic 6

1. 141°
2. 59°
3. $a=4, b=2$
4. A, B, D
5. 144°
6. $4 \sqrt{13}+2 \sqrt{97}$
7. D
8. 35
9. 20
10. A, B, D
11. 37°
12. 44
13. 118°
14. 1.8
15. C, D
16. $4 x \sqrt{17}$
17. 36
18. square
19. quadrilateral
20. kite
