WARM UP

Given that x=37, find the other variable.

$$x = y$$

$$x + t = 180$$

$$180 - 2x = m$$

If
$$r = 36$$
, $s = 34$, and $2r + 3s - x = n$, find n .

ESSENTIAL QUESTION

What angle relationships are created when parallel lines are intersected by a transversal?

NEEDED VOCAB:

- **▶ Parallel Lines**
- ▶ Transversals
- **▶** Corresponding Angles
- **►** Alternate Interior Angles
- **►** Alternate Interior Angles
- **▶** Same-Side Interior Angles

GOAL: "I CAN...

Determine the measures of the angles formed when parallel lines are intersected by a transversal."

EXPLORE AND REASON

The diagram shows two parallel lines cut by a transversal.

- A. What relationships do we already know the angles have with the three immediately around them?
- B. What relationships can we see that the angles will have to the angles of the other intersection?

EXAMPLE 1

Identify the pairs of angles of each angle type made by the snowmobile tracks.

1. Which angle pairs include the named angle?

a. ∠4

 $\begin{array}{c} 1/2 \\ 4/3 \end{array}$

b. ∠5

Same-Side Interior Angles Postulate

If a transversal intersects two parallel lines, then same-side interior angles are supplementary.

Alternate Interior Angles Theorem

If a transversal intersects two parallel lines, then alternate interior angles are congruent.

Topic 2 - Parallel and Perpendiular Lines Page 3

Corresponding Angles Theorem

If a transversal intersects two parallel lines, then corresponding angles are congruent.

Alternate Exterior Angles Theorem

If a transversal intersects two parallel lines, then alternate exterior angles are congruent.

Topic 2 - Parallel and Perpendiular Lines Page 4

CHECKING FOR KNOWLEDGE

How do each of the angles relate to \mathbf{x}° ?

EXAMPLE 2

Prove the Alternate Interior Angles Theorem

Given: $m \parallel n$ Prove: $\angle 1 \cong \angle 2$

3. Prove the Corresponding Angles Theorem.

Given: $m \parallel n$ Prove: $\angle 1 \cong \angle 2$

Example 3

Use the diagram to prove the angle relationship.

Given: $\overline{AC} \parallel \overline{DF}$, $\overline{BE} \perp \overline{DF}$, and $\angle AEB \cong \angle CEB$

Prove: $\angle BAE \cong \angle BCE$

4. Given $\overline{AB} \parallel \overline{CD}$, prove that $m \angle 1 + m \angle 2 + m \angle 3 = 180$.

EXAMPLE 4

The white trim shown for the wall of a barn should be constructed so that $\overline{AC} \parallel \overline{EG}, \overline{JA} \parallel \overline{HB}$, and $\overline{JC} \parallel \overline{KG}$. What should $m \angle 1$ and $m \angle 3$ be?

5. If $m \angle EJF = 56$, find $m \angle FHK$.

Parallel Lines and Angle Pairs

There are four special angle relationships formed when parallel lines are intersected by a transversal.

POSTULATE 2-1 Same-Side Interior Angles Postulate

If... 1

Then... $m \angle 1 + m \angle 2 = 180^{\circ}$

THEOREM 2-2 Corresponding Angles
Theorem

f... 1/

Then... $\angle 1 \cong \angle 2$

Then... $\angle 1 \cong \angle 2$

THEOREM 2-3 Alternate Exterior Angles Theorem

Then... $\angle 1 \cong \angle 2$

Homework

Pg. 76 10-13, 15-17, 19-23 odd, 24, 28