2.2 Point-Slope Form Monday, September 23, 2019 7:46 AM

WARM UP

Solve the following equations for y_1 .

$\frac{5 - y_1}{2 + 5} = \frac{3}{7}$	$\frac{y_1 - 4}{9 + 3} = \frac{3}{4}$	$\frac{4+y_1}{5+15} = \frac{1}{4}$
$\frac{y_1 - 5}{3 - 4} = \frac{3}{5}$	$\frac{y_1 - y_2}{x_1 - x_2} = m$	

ESSENTIAL QUESTION

What information does the point-slope form of a linear equation reveal about a line?

NEEDED VOCAB:

Point-Slope Form

GOAL: "I CAN... Write and graph linear equations in point-slope form."

Paul and Seth know that one	Paul	Seth
point on a line is (4, 2) and the	y = mx + b	$m = \frac{y_2 - y_1}{x_2 - x_1}$
slope of the line is –5. Each	2 = -5(4) + b	$m - \frac{1}{x_2 - x_1}$
student wrote a different	2 = -20 + b	$-5 = \frac{y-2}{x-4}$
equation relating x and y.	22 = b	
	y = -5x + 22	-5(x-4) = y-2

Do you think both of these equations can be correct? How can you use math to prove your idea? (Work with your pod to come up with your answers.)

Understand Point-Slope Form of a Linear Equation EXAMPLE 1

Example 1 Understand What is the formula for the slope of a line? $x_1 + x_2$ = $m(x_1 + x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_1 - y_2 = m(x_1 - x_2)$ $x_2 = m(x_1 - x_2)$ $x_3 = m(x_1 - x_2)$ $x_4 = m(x_1 - x_2)$ $x_4 = m(x_1 - x_2)$ $x_5 = m(x_1 - x_2)$

1. If you know two points on a line, explain the steps you would go through in order to find the y-intercept of the line.

2. Write an equation of the line that passes through (2, -1) and (-3, .3).

3. Sketch the graph of $y + 2 = \frac{1}{2}(x - 3)$.

		4	y		
<u></u> −4	-2	0		2	X
		-2			

-725 = 12(75-50) y-725 = 12(75) y=300+725 y=1025

4. Rewrite the point-slope form of the equation y - 725 = 12(x - 50) in slope-intercept form. What does the *y*-intercept represent in terms of the situation? Explain.

Point-Slope Form of a Linear Equation

Homework

Pg. 67 11(a, d), 12, 15-27 odd, 28-36 even