WARM UP

For each set of coordinate points, write the new set of coordinate points after: Moving them up 4 units, then right 6 units then down 8 units.

1) (-2, 0)	2) (0, 2)	3) (-4, -1)
4) (-3, -6)	5) (5, -3)	6) (4, 4)

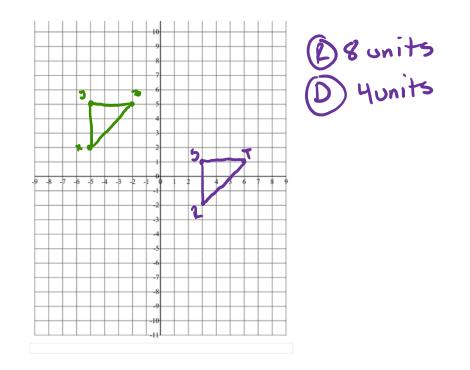
ESSENTIAL QUESTION

What are the properties of a translation?

NEEDED VOCAB:

 Composition of Rigid Motions GOAL: "I CAN... Describe the properties of a figure before and after translation."

Draw Δ XYZ on a coordinate plane. Then copy the triangle to somewhere else on the same coordinate plane and label it Δ RST. Describe how you could move the original to map it to its new location.



Translations

A translation is a transformation in a plane that maps all points of a preimage the same distance and in the same direction.

The translation of $\triangle ABC$ by x units along the x-axis and by y units along the y-axis can be written as $T_{\langle X, Y \rangle}(\triangle ABC) = \triangle A'B'C'$.

A translation has the following properties:

If
$$T_{\langle x, y \rangle}$$
 ($\triangle ABC$) = $\triangle A'B'C'$, then

•
$$\overline{AA'} \parallel \overline{BB'} \parallel \overline{CC'}$$
.

•
$$\overline{AA'} \cong \overline{BB'} \cong \overline{CC'}$$
.

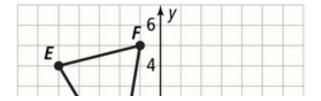
EXAMPLE 1

• $\triangle ABC$ and $\triangle A'B'C'$ have the same orientation.

A translation is a rigid motion, so length and angle measure are preserved.

Finding the Image of a Translation.

What is the graph of $T_{(7, -4)} (\Delta EFG) = \Delta E'F'G'$?

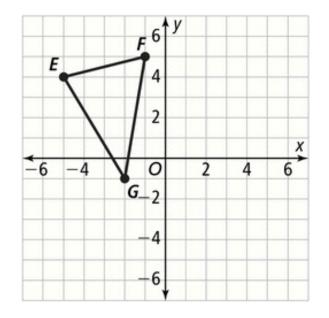


-2 O

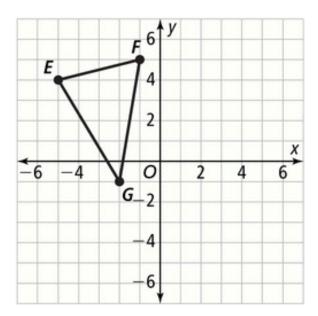
В

х

4

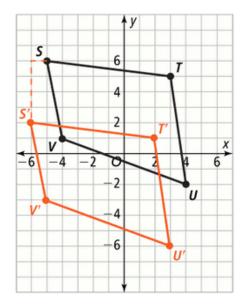


- **1**. What are the vertices of $\Delta E'F'G'$ for each translation?
- a. $T_{(6, -7)}(\triangle EFG) = \triangle E'F'G'$
- **b.** $T_{(11, 2)}(\triangle EFG) = \triangle E'F'G'$

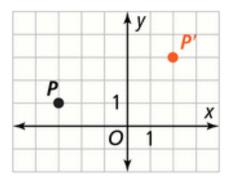


EXAMPLE 2 Write a Translation Rule

What translation rule maps STUV onto S'T'U'V'?

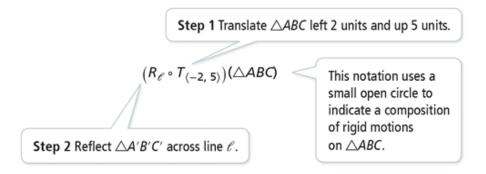


2. What translation rule maps P(-3, 1) to its image P'(2, 3)?



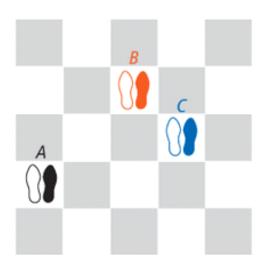
Composition of Rigid Motions

A **composition of rigid motions** is a transformation with two or more rigid motions in which the second rigid motion is performed on the image of the first rigid motion.



EXAMPLE 3 Compose Translations

In learning a new dance, Kyle moves from position A to position B and then to position C. What single transformation describes Kyle's move from position A to position C?



Compose Translations

3. What is the composition of the transformations written as one transformation?

a.
$$T_{\langle 3, -2 \rangle} \circ T_{\langle 1, -1 \rangle}$$

b. $T_{\langle -4, 0 \rangle} \circ T_{\langle -2, 5 \rangle}$

EXAMPLE 4 Relate Translations and Reflections

How is a composition of reflections across parallel lines related to a translation?

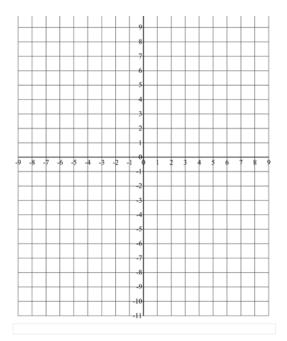
Reflect \triangle ABC across the y-axis and then reflect the image across the line x=4. What do you notice about the points of the preimage and the final image.

ΔABC: A(-2, 2), B(-2, 4), C(0, 2)

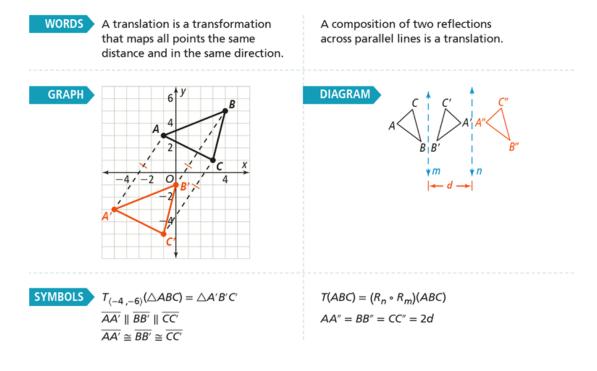
						- 11					
	-	-		-		10			-	\vdash	
-	-		\vdash	-		9				\vdash	
_		_				8				$ \rightarrow $	_
						7					
						6					
+	-	+		-		5				\vdash	
+	-		$\left \right $	-	_	4	++-			\vdash	
_	_	_		_		3			_	\vdash	
						2					
						-					
	-								-	\square	
-	3 -7	-6	5 -	+ -3	-2 -	1 0	1 2	3 4	5	6 7	8 9
_	· [E C									
	-	-		-				++	-	+	
_											
_				+		-2					
_				_							
						-2 -3 -4					
						-2 -3					
						-2 -3 -4					
						-2 -3 -4 -5 -6					
						-2 -3 -4 -5 -6 -7					
						-2 -3 -4 -5 -6 -7 -8					
						-2 -3 -4 -5 -6 -7					
						-2 -3 -4 -5 -6 -7 -8					

4. Suppose *n* is the line with equation y = 1. Given $\triangle DEF$ with vertices D(0, 0), E(0, 3), and F(3, 0), what translation image is equivalent to $(R_n \circ R_{x-axis})(\triangle DEF)$?

$$(R_n \circ R_{x-axis})(\triangle DEF)?$$



Translations and Compositions of Rigid Motions



Homework

Pg. 119 14, 15-18, 21-24, 30, 34