Warm Up

Rotate the following points counter clockwise around the origin the given degrees.
(1) $(1,3), 90^{\circ}$
(2) $(-2,4), 180^{\circ}$
(3) $(2,2), 270^{\circ}$

Essential Question

What are the properties that identify a rotation?

GOAL: "I CAN. . .
Draw and describe the rotation of a figure about a point of rotation for a given angle of rotation."

Rotations

A rotation $r_{\left(x^{\circ}, P\right)}$ is a transformation that rotates each point in the preimage about a point P, called the center of rotation, by an angle measure of x°, called the angle of rotation. A rotation has these properties:

- The image of P is P^{\prime} (that is, $P^{\prime}=P$).
- For a preimage point $A, P A=P A^{\prime}$ and $m \angle A P A^{\prime}=x^{\circ}$.

A rotation is a rigid motion, so length and angle measure are preserved. Note that a rotation is counterclockwise for a positive angle measure.

EXAMPLE 1

With the people in your group. Each of you draw your own triangle in quadrant 1 of a coordinate plane. Each of you draw a rotation of 90° counter clock wise into quadrant 2. Identify each of the points accordingly and see if there is a pattern that happens for a 90° counter clock rotation.

Rules of rotation for $90^{\circ}, 180^{\circ}$, and 270°.

$$
\begin{aligned}
& r_{\left(90^{\circ}, O\right)}(x, y)=(-y, x) \\
& r_{\left(180^{\circ}, O\right)}(x, y)=(-x,-y) \\
& r_{\left(270^{\circ}, O\right)}(x, y)=(y,-x)
\end{aligned}
$$

ExAMPLE 2

What is $r_{\left(90^{\circ}, o\right)} A B C D ?$

2. The vertices of $\triangle X Y Z$ are $X(-4,7), Y(0,8)$, and $Z(2,-1)$.
a. What are the vertices of $r_{\left(180^{\circ}, O\right)}(\triangle X Y Z)$?

$$
\begin{aligned}
& \Delta X^{\prime} Y^{\prime} Z^{\prime} \\
& X^{\prime}(4,-7) \quad Y^{\prime}(B,-8) \quad Z^{\prime}(-2,1)
\end{aligned}
$$

b. What are the vertices of $r_{\left(270^{\circ}, o\right)}(\triangle X Y Z)$?

$$
\begin{aligned}
& \Delta x^{\prime} Y^{\prime} Z^{\prime} \\
& x^{\prime}(7,4) \quad Y^{\prime}(8,0) Z^{\prime}(-1,-2)
\end{aligned}
$$

Reflections in intersecting lines

Any rotation is a composition of reflections across two lines that intersect at the center of rotation.

The angle of rotation is twice the angle formed by the lines of reflection.
If...

PROOF: SEE EXAMPLE 5.
Then...

$$
y^{\circ}=\frac{1}{2} x^{\circ}
$$

Homework

Pg. 127

11, 14, 19-22, 24(Composition Only),
25, 29

