Warm Up

Translate, Rotate, and/or Reflect the following images according the rules given.
$R_{x-\text { axis }}{ }^{\circ} T_{\langle-4,-2\rangle}(\overline{M N})$
$T_{\langle 4,3\rangle}{ }^{\circ} r_{\left(90^{\circ}, O\right)}(\overline{S L})$

Essential Question

How can rigid motions be classified?

Needed Vocab:

- Glide Reflection

GOAL: "I CAN. . .
Identify different rigid motions used to transform twodimensional shapes."

Two students are trying to determine whether compositions of rigid motions are commutative. View all of their work in the gallery of images.
A. Should Paula have used graph paper? Explain.
B. Do you agree with Paula or Keenan? Explain.

Rigid Motion Composition

The composition of two or more rigid motions is a rigid motion.
If...

Then...
$(N \circ M): Q R S T \rightarrow Q^{\prime \prime} R^{\prime \prime} S^{\prime \prime} T^{\prime \prime}$
is a rigid motion.

M: QRST $\rightarrow Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$ and
$N: Q^{\prime} R^{\prime} S^{\prime} T^{\prime} \rightarrow Q^{\prime \prime} R^{\prime \prime} S^{\prime \prime} T^{\prime \prime}$ are rigid motions.
PROOF: SEE EXAMPLE 1.

How can we prove that a composition of rigid motions is a rigid motion?

Example 1
Is there a rigid motion that maps $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?

$$
R_{(x=-1)} \circ T_{\langle x,-5\rangle}
$$

What is the glide reflection that maps $\Delta R S T$ to $\Delta R^{\prime} S^{\prime} T^{\prime}$.

Glide Reflection

Reflection is H or V . the translation is the other.

EXAMPLE 2

A digital artist is reproducing a tire tread pattern from a partial tire print from a crime scene by applying a glide reflection. She uses the rule $T_{\langle 0,0.1\rangle}{ }^{\circ} R_{y \text {-axis }}$ to generate a pattern. Confirm that her rule can be applied to the partial pattern that was taken from the crime scene.

Quadrilateral RSTV has vertices $R(-3,2), S(0,5), T(4,-4), V(0,-2)$. Use the rule $T_{\langle 1,0\rangle} \circ R_{x \text {-axis }}$ to graph and label the glide reflection of RSTV.

What is the glide reflection that maps $\Delta J K L$ to $\Delta J " K " L " ?$

$$
T_{\langle 5,0\rangle} \cdot R_{(y=1)}
$$

What is the glide reflection that maps the following?
$\Delta A B C \rightarrow \Delta A^{\prime} B^{\prime} C^{\prime}$ given: $A(-3,4), B(-4,2), C(-1,1), A^{\prime}(1,1), B^{\prime}(2,-1)$, and $C^{\prime}(-1,-2)$.

$$
T_{\left\langle x_{0},-3\right\rangle} \circ R_{(x-1)}
$$

What is the glide reflection that maps the following?
$\overline{R S} \rightarrow \overline{R^{\prime} S^{\prime}}$ given:
$\mathrm{R}(-2,4), \mathrm{S}(2,6), \mathrm{R}^{\prime}(4,0)$, and $\mathrm{S}^{\prime}(8,-2)$.

$$
T_{\langle 6, \infty\rangle} \cdot R_{y=2}
$$

Types of Rigid Motions

Homework

Pg. 134
9, 10, 12-21, 25, 26

