Warm Up Write an equation of the line passing through point P that

 is perpendicular to the given line.1. $P(-2,4), y=-\frac{2}{3} \cdot y+\frac{5}{2}$
$y-4=\frac{3}{2}(x+2)$
2. $P(5,11), y=8 \xrightarrow{\text { Horiz. }}$

$$
x=5
$$

3. $P\left(\frac{3}{4},-9\right), y=x$ slupe of 1

$$
y+9=-1\left(x-\frac{3}{4}\right)
$$

4. $P(1,-7), y=2 x+3$ $y+7=-\frac{1}{2}(x-1)$
$y+2=-\frac{5}{3}(x-3)$.
$P(3,-2), 3 x-5 y=4$

5. $P\left(-\frac{1}{2}, \frac{-3}{2}\right), x=-3$ vert.line.

Essential Question

What are the properties of the medians in a triangle? What are the properties of the altitudes in a triangle?

Needed Vocab:

- Altitude
- Centroid
- Median
- Orthocenter

Goal: "I CAN. . .
Find the points of concurrency for the medians and the altitudes of a triangle."

With Your Table

- Draw $\triangle A B C$ with vertices at: $A(0,2), B(6,6)$ and $C(8,0)$
- Find the midpoint of all three sides. Starting with the midpoint of $B C$ label them D, E and F. (Clockwise)
- Draw in segment $A D$. This is called a median of $\triangle A B C$.
- Draw in all of the medians of the triangle.
- Label the intersection of the medians as point G.
- What conjecture can you come up with about where the medians of the triangle intersect?
- Need another triangle to figure out the conjecture? Plot $R(1,7), S(7,1)$,

Centroid Theorem

The centroid of a triangle is two-thirds of the distance from each vertex to the midpoint of the opposite side. The centroid is always inside the triangle.

Then...

$$
A G=\frac{2}{3} A D \quad B G=\frac{2}{3} B E \quad C G=\frac{2}{3} C F
$$

Example 1

In the diagram Q is the centroid. What is the length of $\overline{J N}$?

EXAMPLE 1

In the diagram Q is the centroid. What is the length of $\overline{J N}$?

Find $A D$ in both figures.

There are three paths through a triangular park. Each path goes from the midpoint of one edge to the opposite corner. The paths meet at point P.

1. Find $P S$ and $P C$ when $S C=2100$ feet.
$P S=100 \quad P C=1400$
2. Find $T C$ and $B C$ when $B T=1000$ feet. $T C=1000 \quad B C=2000$

3. Find $P A$ and $T A$ when $p T=800$ feet.

With your Table

- Graph $\Delta A B C$ and $\Delta R S T$. $A(4,4), B(7,-2), C(-2,-2), R(7,4), S(7,-4)$, T(-1,0)
- Make a line from vertex A that intersects segment $B C$ at a perpendicular angle. Label the intersection point D. This is the altitude of the triangle (Height).
- Draw the other two altitudes from B and C and label their intersections E and F respectively.

The point of concurrency for the altitudes of a triangle it is call the Orthocenter.

Orthocenter

The lines that contain the altitudes of the triangle are concurrent. This point of concurrency is the orthocenter. It is located IN an acute triangle, ON a right triangle (Vertex of the right angle), and OUTSIDE an obtuse triangle (the obtuse angle points at the orthocenter).

If...

Then... $\overline{K Q}, \overline{L N}$, and $\overline{M P}$ are concurrent at X

Example 2

Find the coordinates of the orthocenter of $\triangle X Y Z$ with vertices $X(-5,-1), Y(-2,4)$, and $Z(3,-1)$.

Tell whether the orthocenter of the triangle with the given vertices is inside, on, or outside the triangle. Then find the coordinates of the orthocenter.
6. $A(0,3), B(0,-2), C(6,-3)$

7. $J(-3,-4), K(-3,4), L(5,4)$

How to find..

Centroid

- Draw the triangle for which you are supposed to find the centroid of.
- Using the slope, find the midpoint of each side of the triangle.
- Using a straight edge, draw in the line between the opposite vertex and the midpoints.

Orthocenter

- Draw the triangle for which you are supposed to find the orthocenter of.
- Find the slope of each side of the triangle.
- Apply the perpendicular slope from the opposite vertex in the direction the orthocenter is.

Homework

Pg. 224
12, 15, 16, 18, 19, 23, 24

