Warm Up

Write and solve a compound interest formula for the following scenario: You invest $\$ 10,000$ on a CD that will yield 5% interest, compounded monthly. What is the value of your investment after 10 years?

Essential Question

How do changes in an exponential function relate to the translations of its graph?

Goal: "I CAN. . .
 Perform, analyze, and use transformations of exponential functions."

With your table

Graph the function $g(x)=3^{x}$. Then on the same graph, graph the function $t(x)=3^{x}+2$. What is the difference between the two graphs?

Graph the function $g(x)=2^{x}$. Then on the same graph, graph the function $t(x)=$ 2^{x+2}. What is the difference between the two graphs?

$$
f(x)=a(b)^{x-h}+k
$$

a : will do a dilation, $\operatorname{stretch}(a>1)$ or
compression ($1>a>0$).
b : is your base
h : will shift the graph left(+) or right(-) h units. k : will shift the graph up(+) or down(-) k units.

How are the following functions changed from their parent functions?

$$
\begin{array}{ll}
g(x)=2^{x}+2 & h(x)=2^{x}-4 \\
t(x)=2^{x-6} & n(x)=2^{x+4}
\end{array}
$$

What transformations are taking place in each function?

$$
v(x)=2^{x-3}+4 \quad r(x)=2^{x+9}-3
$$

$$
s(x)=3(2)^{x-2}-6
$$

With your table

What are the characteristics of each graph? (Without graphing)

$$
t(x)=2^{x+4}-9
$$

$$
h(x)=2^{x-1}+3
$$

What are the characteristics of each graph? (Without graphing)

$$
j(x)=2^{x-2}+1
$$

$$
c(x)=2^{x+3}-2
$$

Homework

Pg. 250
16, 19-24, 30, 34

