

Draw $\triangle A B C$ with points $A(3,0), B(0,0), C(0,3)$.
Draw $\Delta A^{\prime} B^{\prime} C^{\prime}$ with points $A^{\prime}(6,0), B^{\prime}(0,0), C^{\prime}(0,6)$
What is the measure of the side lengths:

$$
\begin{array}{ll}
\overline{A B}=3 & \overline{A^{\prime} B^{\prime}}=6 \\
\overline{B C}=3 & \overline{B^{\prime} C^{\prime}}=6 \\
\overline{A C}=3 \sqrt{2} & \overline{A^{\prime} C^{\prime}}=6 \sqrt{2}
\end{array}
$$

Essential Question

How does a dilation affect the side lengths and angle measures of a figure?

Needed Vocab:

- Center Dilation

GOAL: "I CAN. . .
Dilate figures and identify characteristics of dilation."

Dilation

A dilation $D_{(n, C)}$ is a transformation that has center of dilation C and scale factor n, where $n>0$, with the following properties:

- Point R maps to R^{\prime} in such a way that R^{\prime} is on $\overrightarrow{C R}$ and $C R^{\prime}=n \cdot C R$.
- Each length in the image is n times the corresponding length in the preimage
 (ie., $X^{\prime} R^{\prime}=n \bullet X R$).
- The image of the center of dilation is the center itself (ie., $C^{\prime}=C$).
- If $n>1$, the dilation is an enlargement.
- If $0<n<1$, the dilation is a reduction.
- Every angle is congruent to its image under the dilation.

On a coordinate plane, the notation D_{n} describes the dilation with the origin as center of dilation.

Example 1

Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a dilation with center P of $A B C D$. How are the side lengths and angle measures of $A B C D$ related to those of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$?

$$
\begin{aligned}
& A D=22 \cdot 3 \\
& A^{\prime} 0^{\prime}=6
\end{aligned}
$$

All angles are the same

2. Rectangle $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$ is a dilation with center P of $W X Y Z$. How are the side lengths and angle measures of the two figures related?

$$
\begin{aligned}
& \overline{k=?} \\
& \overline{k=3}
\end{aligned}
$$

2:6
All angle are 1:3

ExAMPLE 2
Quadrilateral $J^{\prime} K^{\prime} L^{\prime} M^{\prime}$ is a dilation of $J K L M$. What is the scale factor?

$12: 18$
6:9
$2: 3 \quad \frac{3}{2}$ or 1.5

$$
k=\frac{3}{2} \text { or } 1.5
$$

3. Consider the dilation shown.
a. Is the dilation an enlargement or a reduction?
b. What is the scale factor?

$\triangle A B C$ is
larger than
$\Delta A^{\prime} B^{\prime} C^{\prime}$ so
Reduction

EXAMPLE 3
What are the vertices of $D_{3}(\triangle A B C)$?
The notation $D_{3}(\triangle A B C)$ means the image of $\triangle A B C$ after a dilation centered at the origin, with scale factor 3.
By multiplying $A^{\prime}(6,-3)$

By using distance from φ, ∞ (center of dilation) and muttidy ins bey scale factor we can find the dilation vertices.
4. Use $\triangle P Q R$.
a. What are the vertices of

$$
\begin{array}{cc}
\left.D_{\frac{1}{4}}^{4} \triangle P Q R\right) ? & P^{\prime}(2,1), Q^{\prime}(3,-1), \\
\text { mans } \div 4 & R^{\prime}(-1,(8)
\end{array}
$$

b. How are the distances to the origin from each image point related to the distance to the origin from each corresponding exactly $1 / 4$ the original
 distance.

Example 4
What are the vertices of $D_{\left(\frac{1}{2}, R\right)}(Q R S T)$?

5. A dilation of $\triangle A B C$ is shown.
a. What is the center of dilation? $A=A^{\prime}$
b. What is the scale factor? Enlargement so $k>1$

$$
\begin{aligned}
& \text { so } \\
& \text { A is center } \\
& \text { of dilation }
\end{aligned}
$$

so

Either use logic and slopes or calculate distances w/distance formula.

EXAMPLE 5
A blueprint for a new library uses a scale factor of $\frac{7}{50}$. Mr. Ayer measures the reading space on the blueprint to find the actual dimensions and area so he can order furniture. $\quad 1: 50$

(A. What are the actual dimensions of the reading space?

B. What is the actual area of the reading space? How does the actual area relate to the area on the blueprint?

14×12

6. A blueprint for a house uses a scale factor of $\frac{1}{20} .1: 20$
a. If the dimensions of the actual kitchen are 3.1 m by 3.4 m , what are the dimensions of the kitchen on the blueprint?

$\frac{3.1}{20} \times \frac{3.4}{20} \rightarrow 0.155 \mathrm{~m} \times 0.17 \mathrm{~m}$
b. What is the relationship between the area of the actual kitchen and the area of the kitchen on the blueprint?

Homework

Pg. 308
10, 13, 14, 18, 20, 22, 25, 27

