## Warm Up

Solve the equation. Write your answer in simplest form.

1. $\frac{8}{\sqrt{2}}=x \frac{\sqrt{2}}{\sqrt{2}}$
2. $\frac{1.5}{\sqrt{3}}=\frac{x \sqrt{3}}{\sqrt{3}}$
$=\frac{1.5 \sqrt{3}}{3}=\begin{aligned} & \text { 3. } \frac{2 x}{\frac{\sqrt{3}}{2}}=\frac{8 \sqrt{7}}{2} \\ & x=4 \sqrt{7}\end{aligned}$
3. $\begin{aligned} & \frac{5 \sqrt{2}}{\sqrt{3}}=\frac{\sqrt{3} x}{\sqrt{3}} \\ & x=\frac{5 \sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}\end{aligned}$
$=\frac{5 \sqrt{6}}{3}$
4. $\begin{aligned} & \frac{9}{2}=x \sqrt{3} \\ & x=\frac{9}{\sqrt{3} 3} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{9 \sqrt{3}}{6}=\frac{3 \sqrt{3}}{2}\end{aligned}$

## Essential Question

6. $\frac{8.4}{\sqrt{2}}=\frac{\sqrt{2} x}{\sqrt{2}}$
$x=\frac{8.4}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{8.4 \sqrt{2}}{2}=4.2 \sqrt{2}$

How are the properties of the Pythagorean Theorem related in special right triangles?

Needed Vocab:

- Special Right Triangles

GOAL: "I CAN...
Use the patterns of special right triangles to solve for variables or the lengths of sides."

In your table groups, plot the points and find the length of all the sides in reduced radical form.
$\rightarrow \mathrm{A}(1,1), \mathrm{B}(1,5), \mathrm{C}(5,1)$
$\rightarrow D(2,-1), E(5,-1), F(2,-4)$


What are the angles of the triangles?


Find the missing side lengths, in reduced radical form.

$60^{\circ}$

123

## EXAMPLE 1

A. To satisfy safety regulations, the distance from the wall to the base of a ladder should be at least one-fourth the length of the ladder. Did Drew set up the ladder correctly?


$$
\begin{aligned}
& x \approx 9.34 \\
& \frac{1}{4 x} \approx 2.34 \\
& \begin{array}{l}
\text { Ladder is setup } \\
\text { correctly }
\end{array} \\
& \hline
\end{aligned}
$$

B. The length of each crosspiece of the fence is

10 ft . Why would a rancher build this fence with the measurements shown?

6,8 and 10 are nice round \#'s thant Satisfy the Pythagorean
 Theorem. This makes the fence strong, the posts $\perp$ to the ground and, with round $\#$ 's, easy to make.
a. What is $K L$ ?
b. Is $\triangle M N O$ a right triangle? Explain.

$9^{2}+40^{2}=x^{2}$
$81+1600=x^{2}$
$1681=x^{2}$
$41=x$

$35^{2}+12^{2}$
$1225+144$
$1369 \quad 37^{2}=1369$
yes it's Right

EXAMPLE 2 Find the value of $x$. Answers in reduced radical form.

a. What are $X Z$ and $Y Z$ ?

b. What are $J K$ and $L K$ ?


## Example 3

Find the values of $x$ and $y$. Write your answer in simplest form.

$$
\begin{aligned}
& x \sqrt{3}=9 \\
& x=\frac{9}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{9 \sqrt{3}}{3}=3 \sqrt{3}=x \\
& y=2 x
\end{aligned}
$$

$$
\begin{aligned}
& y=2 x \\
& y=2(3 \sqrt{3}) \\
& y=6 \sqrt{3}
\end{aligned}
$$

a. What are $P Q$ and $P R$ ?
b. What are UV and $T V$ ?


## Example 4

A. Alejandro needs to make both the horizontal and vertical supports, $\overline{A C}$ and $\overline{A B}$, for a ramp. Is one 12-foot board long enough for both supports? Explain.

B. Olivia starts an origami paper crane by making the $200-\mathrm{mm}$ diagonal fold. What are the side length and area of the paper square?

a. What are $A B$ and $B C$ ?
b. What are $A C$ and $B C$ ?


$y=x$
$y=7 \sqrt{2}$
https://tinyurl.com/vwf8olb


## Homework

Pg. 352
10, 11, 14-16, 20-22, 25, 27

