PRACTICE & PROBLEM SOLVING

UNDERSTAND

- **10.** Reason How does changing the sign of the constant *a* from positive to negative affect the domain and range of f(x) = a|x|?
- **11.** Communicate Precisely Compare and contrast the graph of f(x) = |x| and the graph of f(x) = x. How are they alike? How do they differ?
- 12. Error Analysis Describe and correct the error a student made in determining the relationship between the domain and range of f(x) = 10|x| and f(x) = |x|.

The domain of f(x) = 10|x|is the same as the domain of f(x) = |x|. The range of f(x) = 10|x|is 10 times the range of f(x) = |x|.

- **13.** Higher Order Thinking For which values of *a* would the graph of f(x) = a|x| form a right angle at the vertex? Explain.
- 14. Use Structure The table shows selected values for the function g(x) = a|x|. Copy and complete the table. Write any unknown answers in terms of a and b.

x	g(x)=a x
-4	b
	а
	0
1	
	b
	2b

- **15. Reason** Consider the function f(x) = 2|x|.
 - **a** Graph *f* over the domain $-4 \le x \le 4$.
 - **b.** What is the rate of change over the interval $0 \le x \le 4$?
 - **c.** How is the rate of change over this interval related to the form of the function?

PRACTICE

Tell whether each point is on the graph of f(x) = |x|. If it is, give the coordinates of another point with the same y value. SEE EXAMPLE 1

16. (11, 11)	17. (–2.3, –2.3)
18. (0, 1)	19. (15, -15)
20. (-8, 8)	21. (1, 0)

Graph each function. What is the domain and range of each function? SEE EXAMPLE 2

22. $g(x) = -\frac{1}{4} x $	23. $h(x) = 3.5 x $
24. $p(x) = -5 x $	25. $d(x) = \frac{1}{3} x $

26. Oscar participates in a charity walk. The graph shows his distance in miles from the water stop as a function of time. How many miles did Oscar walk? Explain your answer. SEE EXAMPLE 3

For the graph shown, find the rate of change over the interval. SEE EXAMPLE 4

For each description, write a function in the form g(x) = a|x|.

- 29. vertex at (0, 0); passes through (1, 3)
- **30.** range is $y \le 0$; passes through (-1, -4)

PRACTICE & PROBLEM SOLVING

APPLY

31. Model With Mathematics A game designer is looking for two functions to model the solid lines in the figure she constructed. What functions represent the solid lines?

32. Make Sense and Persevere The graph shows the distance between a bicyclist and a sandwich shop along her route. Estimate the rate of change over the highlighted interval. What does the rate mean in terms of the situation?

33. Make Sense and Persevere The function h(x) = -|x| + 34 models the height of the roof of a house, where x is the horizontal distance from the center of the house. If a raindrop falls from the end of the roof, how far from the center of the base does it land? Explain your solution.

SASSESSMENT PRACTICE

- **34.** The graph of f(x) = -0.1|x| opens _____. The point (_____, -10) is on the graph.
- **35.** SAT/ACT For what domain is the range of y = -x and y = -|x| the same?
 - $\textcircled{A} \{x \mid x < 0\}$
 - $\textcircled{B} \{x \mid x \leq 0\}$
 - (x | x > 0)
 - $\textcircled{D} \{x \mid x \ge 0\}$
 - (E) all real numbers
- **36.** Performance Task The position of a lizard in a video game is modeled on a coordinate plane. The lizard follows the path shown.

Part A Write a function that includes an absolute value expression for the position of the lizard.

Part B Interpret the graph. Find the vertex and determine the intervals in which the function is increasing, decreasing; and any maximum or minimum values.

Part C Where would the function need to intersect the *x*-axis so that the lizard can eat the mosquito?

Part D Write a function for which the new vertex that you found in Part C is a solution to the function, and allows the lizard to eat the mosquito.