PRACTICE & PROBLEM SOLVING

UNDERSTAND

19. Make Sense and Persevere Describe two ways to express the edge length of a cube with a volume shown.

- **20. Construct Arguments** Explain why $5^{\frac{4}{3}}$ must be equal to $\sqrt[3]{5^4}$ if the Power of a Power Property holds for rational exponents.
- **21. Error Analysis** Describe and correct the error a student made when starting to solve the equation $8^{x+3} = 2^{2x-5}$.

- **22.** Construct Arguments The Power of a Quotient rule is $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$, $b \neq 0$. Will this rule work with rational exponents if $\frac{a}{b}$ is a positive number? Give an example to support your argument.
- **23.** Higher Order Thinking The Zero Exponent Property is $a^0 = 1$, $a \neq 0$.
 - **a.** How could you use properties of exponents to explain why $a^0 = 1$?
 - **b.** How could the Zero Exponent Property be applied when solving equations with rational exponents?
- **24.** Use Structure Consider the expression $\sqrt{\sqrt{625}}$.
 - a. Write the radical using rational exponents.
 - **b.** Describe two different ways to evaluate the expression.
 - c. Simplify the expression from part (b).

PRACTICE

Write each radical using rational exponents.

- SEE EXAMPLE 1

 25. $\sqrt{3}$ **26.** $\sqrt[3]{7}$
 27. $\sqrt[5]{3^2}$ **28.** $\sqrt[4]{2^{-5}}$
- **29.** $\sqrt[3]{a^2}$ **30.** $\sqrt{b^a}$

Solve each equation. SEE EXAMPLES 2-5

31. $(5^{\frac{x}{3}})(5^{\frac{x}{4}}) = 5^{5}$ 32. $(2^{\frac{x}{2}})(4^{\frac{x}{2}}) = 2^{6}$ 33. $(3^{\frac{x}{2}+1}) = (3^{-\frac{5x}{2}})$ 34. $625^{2x-3} = 25^{3x-2}$ 35. $(\frac{1}{243})^{-\frac{x}{3}} = (\frac{1}{9})^{-\frac{x}{2}+1}$ 36. $8^{\frac{-x}{3}} = 4$ 37. $49^{\frac{x}{4}-1} = 343^{\frac{x}{3}}$ 38. $3 = (5^{\frac{1}{2}})(x^{\frac{1}{2}})$ 39. $2 = (4^{\frac{1}{3}})(2^{\frac{x}{3}})$ 40. $\frac{27^{\frac{1}{4}}}{3^{\frac{x}{4}}} = 1$ 41. $5^{-\frac{2}{3}} = \frac{125^{\frac{x}{3}}}{25^{\frac{4}{3}}}$ 42. $\frac{6^{\frac{1}{4}}}{36^{-\frac{x}{2}}} = 1$

For each partial solution, identify the property of exponents that is used. SEE EXAMPLES 2–4

43.

44.

PRACTICE & PROBLEM SOLVING

APPLY

45. Use Appropriate Tools The formula for the volume V of a sphere is $\frac{4}{3}\pi r^3$. What is the radius of the basketball shown?

- 46. Use Structure A singing contest eliminates contestants after each round. To find the number of contestants in the next round, raise the number of contestants in the current round to the power of $\frac{6-n}{7-n'}$, where *n* is the number of the current round.
- 47. Make Sense and Persevere Photos A, B, and C are all square photos. The area of Photo C is the same as a rectangular photo whose length is the side length of Photo A and whose width is the side length of Photo B. Use the properties of rational exponents to write and solve an equation to find the side length of Photo A to two decimal places.

Photo A

Photo B Area = 72 cm^2 Area = $x \text{ cm}^2$

Photo C Area = 110 cm^2

S ASSESSMENT PRACTICE

48. Match each expression with its equivalent expression.

١.	⁴ √2 ⁵	A. 2 ^{$\frac{1}{5}$}
П.	$\sqrt{5}$	B. 2 ^{⁵/₄}
III.	⁵ √2 ⁴	C. $2^{\frac{4}{5}}$
IV.	∛2	D. 5 ^{¹/₂}

49. SAT/ACT What is the value of x in $27^{\frac{x}{2}} = 3^{x-1}$?

- (A) −3
- (B) _2
- $\bigcirc \frac{1}{3}$
- D 2
- **E** 3
- 50. Performance Task It is possible to write any positive integer as the sum of powers of 2 with whole number exponents. For example, you can write 75 in the following manner.

$$2^0 + 2^1 + 2^3 + 2^6 = 75$$

Part A Use the equation above to write 75 as the sum of powers of 8, using rational exponents. What are possible values for a, b, c and d?

$$8^a + 8^b + 8^c + 8^d = 75$$

Part B How can you modify the equation you wrote in part A to express 75 as sum of powers of 16?

$$16^a + 16^b + 16^c + 16^d = 75$$

Part C Given that a, b, c, and d are rational numbers, for what types of integer values of x is the following equation true? Explain your answer.

$$x^a + x^b + x^c + x^d = 75$$