UNDERSTAND

8. Construct Arguments Write an indirect proof of the Converse of the Corresponding Angles Theorem following the outline below.

Given: $\angle 1 \cong \angle 2$
Prove: $\ell \| m$

- Assume that lines ℓ and m are not parallel.
- Draw line n parallel to line ℓ.

- Conclude that $m \angle 3>0$.
- Use the Same-Side Interior Angles Postulate to arrive at the contradiction that $m \angle 1 \neq m \angle 2$.

Error Analysis
What is the student's error?

Given $\angle 1 \cong \angle 2$. By the Vertical Angles Thm., $\angle 1 \cong \angle 3$, so by the Transitive Property, $\angle 2 \cong \angle 3$. By the Converse of the Corresponding Angles Thm., $a \| b$.
10. Mathematical Connections Copy the figure below. Construct a line through P parallel to ℓ. (Hint: Copy either $\angle P C A$ or $\angle P C B$ so that one of the sides of the angle is parallel to ℓ.) What theorem justifies your construction?

11. Higher Order Thinking The interior angles of a regular hexagon are congruent. Why are any pair of opposite sides parallel?

PRACTICE

For Exercises 12-15, use the given information. Which lines in the figure can you conclude are parallel? State the theorem that justifies each
answer. SEE EXAMPLES 1 AND 3

12. $\angle 2 \cong \angle 3$
13. $\angle 6 \cong \angle 7$
14. $\angle 1 \cong \angle 4$
15. $m \angle 5+m \angle 8=180^{\circ}$
16. Write a flow proof of the Converse of the Alternate Exterior Angles Theorem. SEE EXAMPLE 2

Use the figure for Exercises 17 and 18. SEE EXAMPLE 2

17. Given $a \| c$ and $b \| c$, write a flow proof of Theorem 2-8.
18. Given $a \perp d$ and $b \perp d$, write a flow proof of Theorem 2-9.
19. For what value of x is $f \| g$? Which theorem justifies your answer? SEe EXAMPLE 4

APPLY

20. Look for Relationships To make a puzzle, Denzel draws lines a and b to cut along on a square piece of posterboard. He wants to draw line c so that it is parallel to line b. What should the measure of $\angle 1$ be? Explain.

21. Reason A downhill skier is fastest when her skis are parallel. What should $\angle 1$ be in order for the skier to maximize her speed through a gate? Which theorem justifies your answer?

22. Make Sense and Persevere Malia makes a fabric design by drawing diagonals between opposite corners. She wants to draw other lines parallel to one of the diagonal lines, as shown by the dashed lines.
a. What should $\angle 1$ be in order for line b to be parallel to line a ? Explain.
b. What should $\angle 2$ be in order for line c to be parallel to line b ? Explain.

ASSESSMENT PRACTICE

23. In order for $c \| d, \angle 2$ and $\angle 7$ must be \qquad $?$ and $\angle 3$ and $\angle 5$ must be \qquad _.

24. SAT/ACT Which statement must always be true?

(A) If $\angle 1 \cong \angle 2$, then $g \| h$.
(B) If $\angle 1 \cong \angle 3$, then $g \| h$.
(C) If $\angle 2 \cong \angle 4$, then $j \| k$.
(D) If $\angle 3 \cong \angle 4$, then $j \| k$.
25. Performance Task The diagram shows part of a plan to arrange aisles in a store.

Part A The aisles are arranged so that $m \angle 1=125$. What should be the measures of the other labeled angles so that all three aisles will be parallel? Explain.

Part B Describe how theorems can be applied to make sure that the T-shirt aisles are parallel.

