UNDERSTAND

10. Construct Arguments Write a Proof of Theorem 5-6: In $\triangle A B C$, let the angle bisectors of $\angle A$ and $\angle B$ intersect at point P. Show that P is equidistant from each side of $\triangle A B C$, and that $\overline{C P}$ bisects $\angle C$.
11. Higher Order Thinking A right triangle has vertices $X(0,0), Y(0,2 a), Z(2 b, 0)$. What is the circumcenter of the triangle? Make a conjecture about the diameter of a circle that is circumscribed about a right triangle.
12. Error Analysis What is the error that a student made in finding the perimeter of $\triangle D T M$? Correct the error.

$$
D T=34.5, T M=17, D M=34.5 .
$$

The perimeter of $\triangle D T M$ is $34.5+17+34.5=86$.
13. Mathematical Connections A triangle with incenter P has side lengths x, y, and z. The distance from P to each side is a. Write an expression for the area of the triangle. Use the distributive property to factor your expression.
14. Reason In a right triangle with side lengths of 3,4 , and 5 , what is the radius of the inscribed circle? Show your work. (Hint: Let r be the radius. Label the lengths of each segment formed by the perpendiculars to the sides.)

PRACTICE

15. The perpendicular bisectors of $\triangle J K L$ are $\overline{P T}, \overline{Q T}$, and $\overline{R T}$. Name three isosceles triangles. SEe example 1

Use the diagram below for Exercises 16-18. Points D, E, and F are the midpoints of the sides of $\triangle A B C$. SEE EXAMPLES 2 AND 4

16. Which point is the center of a circle that contains A, B, and C ?
17. Which point is the center of a circle that intersects each side of $\triangle A B C$ at exactly one point?
18. The perpendicular bisector of $\overline{A B}$ is m and the perpendicular bisector of $\overline{B C}$ is n. Lines m and n intersect at T. If $T A=8.2$, what is $T C$? SEE EXAMPLE 3

Find the values. see example 5

19. $E G$
20. GF

If $X Y=24, X Z=22$, and $J Q=5$, find the values. Round to the nearest tenth.

21. The radius of the circumscribed circle of $\triangle X Y Z$
22. QK

APPLY

23. Model With Mathematics A maintenance crew wants to build a shed at a location that is the same distance from each path. Where should the shed be located? Justify your answer with a diagram.

24. Reason What is the area of the patio not covered by the sunshade? Round to the nearest tenth, and explain how you found your answer.

25. Make Sense and Persevere A ball manufacturer wants to stack three balls, each with an 8 -centimeter diameter, in a box that is an equilateral triangular prism. The diagram shows the dimensions of the bases. Will the balls fit in the box? Explain how you know.

ASSESSMENT PRACTICE

26. In $\triangle A B C, \overline{A B}$ has midpoint M, and ℓ is the perpendicular bisector of $\overline{A B}$ and the angle bisector of $\angle A C B$. Which of the following must be true? Select all that apply.
(A) The radius of the inscribed circle of $\triangle A B C$ is $A M$.
(B) $A C=C B$
(C) Both the circumcenter and incenter of $\triangle A B C$ are on ℓ.
(D) The circumcenter of $\triangle A B C$ is inside the triangle.
27. SAT/ACT Circle O intersects $\overline{A B}$ only at $F, \overline{B C}$ only at G, and $\overline{A C}$ only at H. Which equation is true?
(A) $A H=A C$
(D) $O F=O C$
(B) $m \angle O F B=90$
(E) $\angle B A O \cong \angle A B O$
(c) $O B=O C$
28. Performance Task Edison High School is designing a new triangular pennant. The school mascot will be inside a circle, and the circle must touch each side of the pennant. The circle should fill as much of the pennant as possible.

Part A Using a straightedge and compass, draw at least 4 different types of triangles for the pennant. Construct an inscribed circle in each triangle.

Part B Make a table about your pennants. Include side lengths, type of triangle, circle radius and area, triangle area, and ratio of circle area to triangle area.

Part C What type of triangle do you recommend that they use? Justify your answer.

