





### UNDERSTAND

12. Error Analysis What is Benson's error?



**13. Mathematical Connections** What percent of the area of  $\triangle PQR$  is the area of  $\triangle QRS$ ? Explain.



**14. Construct Arguments** Write a proof of the Side-Splitter Theorem.

Given:  $\overline{MN} \parallel \overline{AC}$ Prove:  $\frac{AM}{MB} = \frac{CN}{NB}$ 



**15. Higher Order Thinking** 

Suppose *O*, *P*, and *Q* are midpoints of the sides of  $\triangle LMN$ . Show that  $\triangle LOQ$ ,  $\triangle OMP$ ,  $\triangle QPN$ , and  $\triangle PQO$  are congruent to each other.

**16. Construct Arguments** Write a proof for the Triangle-Angle-Bisector Theorem.



**Prove:**  $\frac{CA}{AB} = \frac{CD}{DB}$ Use the following outline.

- Extend CA and draw a line through point B parallel to AD that intersects CA at point E.
- Show that  $\frac{CA}{AE} = \frac{CD}{DB}$ .
- Then show that △*AEB* is isosceles.







# PRACTICE

#### For Exercises 17–19, find each value.

SEE EXAMPLES 1 AND 2







20. What is the value of x? SEE EXAMPLE 3

18. v







**23.** *y* = 18

**24.** Write a proof of the Triangle Midsegment Theorem.

Given:  $\overline{DG} \cong \overline{GE}$ ,  $\overline{FH} \cong \overline{HE}$ Prove:  $\overline{GH} \parallel \overline{DF}$ ,  $GH = \frac{1}{2}DF$ 



**25.** Write a proof of the Corollary to the Side-Splitter Theorem.

Prove:  $\frac{AB}{BC} = \frac{DE}{EF}$ Hint: Draw  $\overline{AF}$ . Label the intersection of  $\overline{AF}$ and  $\overrightarrow{BE}$  point G.

**Given:**  $\ell \parallel m \parallel n$ 



338 TOPIC 7 Similarity

# PRACTICE & PROBLEM SOLVING



# APPLY

**26.** Use Structure A building in the shape of a pyramid needs to have supports repaired, and two parallel sections need to be reinforced. The face of the building is an equilateral triangle. What are the lengths of  $\overline{KO}$  and  $\overline{LN}$ ?



**27. Higher Order Thinking** Use the figure to prove Theorem 2-13: Two non-vertical lines are parallel if and only if they have the same slope.



- a. Assume the slopes of lines *m* and *n* are equal. Use proportions in  $\triangle ACE$  and  $\triangle BCD$  to show that  $m \parallel n$ .
- **b.** Now assume that  $m \parallel n$ . Show that the slopes of *m* and *n* are equal.
- **28.** Use Structure Aisha is building a roof and needs to determine the lengths of  $\overline{CG}$  and  $\overline{CF}$  from the design shown. How can she determine *CG* and *CF*? What are *CG* and *CF*?



# ASSESSMENT PRACTICE

**29.** What is the value of *x*?



30. SAT/ACT What is the measure of side CB?



**31. Performance Task** Emma is determining measurements needed to simulate the distances in a shuffleboard computer game that she is programming.



**Part A** The horizontal lines must be parallel and in proportion so that each zone of the shuffleboard appears to be the same length. What are the lengths *w*, *x*, and *y*?

**Part B** What is the length of each horizontal segment?

**Part C** Which horizontal segment is closest to the midsegment of the triangle that extends off of the screen? How do you know?