Warm Up

Evaluate the following Piecewise Function for the following values of \mathbf{x}.

$$
t(x)=\left\{\begin{array}{ccl}
x+1, & x \leq-4 & t(-12)= \\
\frac{1}{2} x+4, & -4<x \leq 2 & t(-1)= \\
-3 x+6, & 2<x & t(6)=
\end{array}\right.
$$

https://tinyurl.com/vp9vnqt

Finish the piecewise function.

$$
\dagger^{8}
$$

$$
f(x)=f(x)=\left\{\begin{array}{cc}
-\frac{1}{2} x \ldots, & x \leq \\
x+\ldots, & <x< \\
, \quad<x
\end{array}\right.
$$

Over what interval is the graph increasing? Decreasing?

Your company is going to buy T-Shirts to hand out at Salmon Days as a promotion. You have a t-shirt maker you are going to use but aren't sure how many t-shirts to get. You know that by handing out at least 50 t-shirts you'll get more customers but you can't spend
more than $\$ 250$ because of budget. If the t-shirts are sold to you using the piecewise function below, how many should you get and for what cost?

$$
f(x)=\left\{\begin{array}{cc}
15 x+25, & 0 \leq x \leq 10 \\
10 x+15, & 11 \leq x \leq 50 \\
5 x+5, & 51 \leq x
\end{array}\right.
$$

Draw an example of a piecewise function that has a maximum value of 3 .

What is the piecewise function for the given graph?

$$
f(x)=\{
$$

https://tinyurl.com/s7bsxx4

